
148



Chapter 9

Working with strings

9.1 Operations

Computer scientists use the term string, or character string, to mean a sequence of char-
acters, which are basically keys on the keyboard. (There are a few exceptions: the arrow
keys, function keys, “page up” and “page down” keys, etc. don’t produce ordinary char-
acters.) You’ve already learned how to type a literal string: a string starts and ends with
double-quote marks, and in between them, you can put numbers, letters, spaces, paren-
theses, punctuation — anything except other double-quote marks. (In fact, if you really
need to put a double-quote mark inside a string, you can do it by preceding it with a
backslash, e.g. "He said \"Hello,\" and I replied \"Hi there.\"" We won’t need
to do this very often.) In this section we’ll learn to operate on strings just as we’ve already
learned to operate on pictures and numbers.

The simplest imaginable string has no characters at all in between the quotation
marks:

""

This is referred to, for obvious reasons, as the “empty string”. Whenever you write a
function that works on strings, make sure you include the empty string as one of the test
cases.

Here are several of the most common operations on strings:

string-append

Contract:

; string-append : string ...-> string

It takes in one or more1 strings, puts them together end to end into a single string,
and returns that. For example,

(string-append "hello" "there" "friend")

"hellotherefriend"

Note that it does not automatically put spaces in between: if you want spaces, you
have to put them in:

(string-append "hello " "there" " " "friend")

"hello there friend"

1Actually, it even accepts no strings at all; it returns the empty string "".

149



150 CHAPTER 9. WORKING WITH STRINGS

string-length

Contract:

; string-length : string -> integer

It tells you how many characters (letters, spaces, punctuation marks, etc.) are in
the given string. For example,

(string-length "hellothere")

10

(string-length "Hi there, friend!")

17

substring

Contract:

; substring : string integer(start) [integer(end)] -> string

(The “[integer(end)]” notation means that the third parameter is optional; in other
words, the function takes in a string and one or two integers.) If there is only one
integer parameter, substring chops off that many characters at the beginning. If
there are two integer parameters, substring chops off everything after the first
end characters, and then chops off the first start characters. The result will have
length end-start, unless end is smaller than start, in which case you’ll get an
error message.

number->string

Contract:

; number->string : number -> string

Converts a number to the sequence of characters used to print it out.

string->number

Contract:

; string->number : string -> number

If the string can be interpreted as the sequence of characters used to print out a
number, returns that number. If not, returns the special value false (about which
we’ll learn more in Chapter 13).

Practice Exercise 9.1.1 Play with these.

9.2 String variables and functions

You can define variables and functions with string values just as you can define them with
image or numeric values.

Practice Exercise 9.2.1 Define a variable named me whose value is your full name
(first and last, with a space in between).
Write several expressions using this variable and the built-in functions string-append,
string-length, and substring.



9.3. REVIEW 151

Exercise 9.2.2 Develop a function named repeat that takes in a string and returns
that string appended to itself (i.e. the resulting string is twice as long).

Exercise 9.2.3 Develop a function chop-first-char that takes in a string and re-
turns all but the first character. (For now, you may assume the string is non-empty; we’ll
drop this assumption later.)

Exercise 9.2.4 Develop a function first-char that takes in a string and returns a
string of length 1, containing just the first character of the given string. (For now, you
may assume the string is non-empty; we’ll drop this assumption later.)

Exercise 9.2.5 Develop a function named last-half that takes in a string and re-
turns the last half of it.

Hint: Be sure to test your program on both even-length and odd-length strings. Also
try some special cases like the empty string, "".

Exercise 9.2.6 Develop a function named first-half that takes in a string and
returns the first half of it.

What happens if you concatenate the first-half of a string to the last-half of the
same string? What should happen? Again, be sure to test this on both even-length and
odd-length strings, and on the empty string.

Exercise 9.2.7 Develop a function named number->image that takes in a number and
returns an image of that number in (say) 18-point blue font.

Hint: Combine the built-in functions text and number->string.

Exercise 9.2.8 Develop a function named digits that takes in a positive integer (like
52073; you don’t need to deal with fractions or decimals) and tells how many digits long
it is, when written in base 10.

Hint: This doesn’t require any arithmetic, only combining functions described in this
chapter.

9.3 Review of important words and concepts

Thus far we’ve seen three important data types, or kinds of information: images, strings,
and numbers (which can be further broken down into integers, fractions, floats, and
complexes). Racket provides several built-in functions for working on strings. These
functions are used in exactly the same way as functions on images or functions on numbers.
Likewise, you can define variables and functions with string values, just as you defined
variables and functions with image or number values.

9.4 Reference: Built-in functions on strings

This chapter introduced the following built-in functions:

• string-append



152 CHAPTER 9. WORKING WITH STRINGS

• string-length

• substring

• number− >string

• string− >number


